
View - molecular graphics for all devices - 

from smartphones to workstations

by Elmar Krieger and Gert Vriend

This accessory document for our Bioinformatics Applications Note contains the detailed step-by-step 

recipe to  implement  the visualization algorithm described.  This includes  the creation of ray-traced 

spheres with POVRay, the setup steps and the actual application main cycle.

 1  Prepare the impostor graphics (=sphere images), for example using POVRay:

 1.1  Loop over the S different sphere styles. We use eight styles, each described by a different  

POVRay texture:  Normal with phong shading, normal without phong shading, sky reflection 

with phong shading, normal with phong shading and bumps, agate, crackle, granite and outline 

(the latter means single color atoms with a black border to yield comic-style graphics, as in the 

PDB's molecule of the month):
char *pov_texture[]={

  /* 0 Normal with phong shading */

  "texture { pigment { color Ball } finish { phong 1 ambient 0.15 } }",

  /* 1 Normal without phong shading */

  "texture { pigment { color Ball } finish { ambient 0.15 } }",

  /* 2 Sky reflection with phong shading */

  "texture { pigment { granite turbulence 0.70 color_map { [.4, color Ball ] [1.0,

   color   1.3*Ball ] } scale 0.8 } finish { phong 1 ambient 0.15 } } ",

  /* 3 Normal with phong shading and bumps */

  "texture { pigment { color Ball } normal { bumps 0.25 scale 0.05 } finish { phong 1

   ambient 0.15 } }",



  /* 4 Agate (see http://astronomy.swin.edu.au/~pbourke/povray/bump/) */

  "texture { pigment { color Ball } normal { agate agate_turb 0.5 scale 1 } finish {

   phong 1 ambient 0.15 } }",

  /* 5 Crackle */

  "texture { pigment { color Ball } normal { crackle 1 scale 0.2 } finish { phong 1

   ambient 0.15 } }",

  /* 6 Granite */

  "texture { pigment { color Ball } normal { granite scale 0.5 } finish { phong 1

   ambient 0.15 } }",

  /* 7 Outline (dummy, needs post-processing) */

  "texture { pigment { color Ball } finish { ambient 1.0 } }" };

 1.1.1  Open a binary file to store the sphere bitmaps with the current style (with a file format 

of your choice), let's name it 'sphere_styleS.dat'

 1.1.2  Loop  over  the  different  light-source  positions.  We use  48  positions,  all  in  the  first 

quadrant (X>0, Y>0, Z=-d..+d). The other three quadrants are created by mirroring on the 

fly when the user moves the light-source interactively around the molecule (i.e. the user 

can choose 192 light-source positions, which is enough to hide the fact that the graphics 

are precalculated).

 1.1.2.1  Loop over the three different atom shifts along the X axis: The atom is now ray-

traced three times, horizontally shifted by 0,  -s and +s. The first  zero shift  is used 

normally, and the latter two shifts are used for stereoscopic 3D graphics, where the 

images for left and right eye need different sphere graphics, so that spheres appear 

plastic and not flat.

 1.1.2.1.1  Run POVRay to trace the sphere with color yellow and size 256x256 pixels, 

given the current light-source position and horizontal camera shift.  For 4K and 

Apple retina displays, the sphere size should be increased to 512x512 pixels, and 

the steps below adjusted.

 1.1.2.1.2  Load the POVRay output file

 1.1.2.1.3  Move the sphere to the left side (for stereo modes, we can't simply create a 

256*256 output file due to the shift -s and +s, and use 640*256 instead)

 1.1.2.1.4  Clip the sphere bitmap size to 256x256 pixels

 1.1.2.1.5  Loop over the 256 pixel lines

 1.1.2.1.5.1  Find the first non-empty pixel from the left and set all empty pixels on 

the left to its color. 

 1.1.2.1.5.2  Find the first non-empty pixel from the right and set all empty pixels 

on the right to its color. The last two steps make sure that the background color 



is removed from the sphere bitmap and does not accidentally appear during 

rendering with OpenGL.

 1.1.2.1.6  To save space, compress the sphere bitmap from 24-bit true-color to an 8-bit 

intensity  (considering the red  and blue color  channels  only,  the  green  channel 

equals the red, since the sphere was ray-traced in yellow).

 1.1.2.1.7  Compress the 8-bit intensity further with Zlib

 1.1.2.1.8  Store  the  Zlib  compressed  256x256  8-bit  intensity  bitmap  in  file 

'sphere_styleS.dat'

 2  On application startup: set the default parameters for the graphics engine, for example by loading 

them from an *.ini file that stores the user's preferences

 2.1  ply_lightdir – The direction (unit-)vector from the origin to the light-source for all PoLYgons. 

 2.2  atv_size – ATom Visualization Size - The size of atoms when they touch (and are clipped by) 

the  view plane,  in  percent  of  the  maximum size  supported  by  the  graphics  engine  [0..1]. 

Changing this size is equivalent to moving the near clipping plane.

 2.3  atv_texture – The texture applied to atoms (plain, granite, sky reflection..)

 2.4  atv_ambience – The amount of darkness caused by blocked ambient light [0..1]

 2.5  atv_shadow – The amount of darkness caused by shadows [0..1]

 3  Create the application window

 4  Initialize the graphics engine

 4.1  Determine ply_eyedis, the distance between the eye (=camera) and the view plane in pixels, 

which depends on the size and aspect ratio of the application window: If  WindowSize.x*0.75> 

WindowSize.y, then ply_eyedis=WindowSize.x, else ply_eyedis=WindowSize.y/0.75.

 4.2  Determine  the  scaling  factor  from  atom  coordinates  [in  femtometers]  to  screen  pixels: 

atv_fmtopix=8e-7*ply_eyedis*atv_size,  e.g.  if  the window size is  1024*768 and atoms are 

shown with full size, then an atom sphere with radius 1.5  Å gets a radius of 123 pixels for 

visualization.

 4.3  Allocate  a  1024*1024  OpenGL texture  atv_viewtex  (Figure  1B),  where  the  precalculated 

sphere  images  will  be  stored  (or  2048*2048  for  high-res  screens).  If  stereoscopic  3D  is 

enabled,  allocate  another  texture  to  store  sphere  images  as  seen  from  the  other  eye 

(atv_viewtex2).

 4.4  Create a table 'defradtab' of defined sphere radii (in pixels) that will be present in atv_viewtex  

(Figure 1B), we use [1,2,3,4,5,6,7,8,9,10,11,12,14,16,18,20,22,24,26,28,30,32,64,127], so the 

largest atom that can be displayed (without zooming the texture and reducing the resolution) 



has a radius of 127 pixels.

 4.5  Define ATV_COLORS, the number of standard colors available, we use ATV_COLORS=7: 

blue, magenta, red, yellow, green, cyan and grey (Fig.1B). Atoms with non-standard colors can 

be  created  by  blending  two standard  colors  using  multi-texturing  and a  variable  blending 

factor.

 4.6  Loop over the sphere radii r in defradtab:

 4.6.1  Calculate the alpha mask for a filled circle of radius r (which will later be filled with the 

2D image of the atom sphere). This is just a bitmap of 8-bit values, 2r*2r pixels large, with 

values indicating the fraction of the pixel covered by the filled circle (ranging from 0 (pixel 

is totally outside circle) to 255 (pixel is totally inside circle)).

 4.6.2  Loop  over  the  ATV_COLORS,  and  for  each  find  the  next  empty  spot  in  texture 

atv_viewtex, copy the alpha mask to the texture's alpha channel at this spot (and also to 

atv_viewtex2 if present).

 4.7  Load  the  Zlib  compressed  file  with  the  8-bit  intensity  bitmaps  of  size  256*256 

'sphere_styleS.dat',  where  'S'  is  the  chosen  atom texture  atv_texture.  This  step  is  repeated 

whenever the user changes the atom texture.

 4.8  Fill the textures atv_viewtex/atv_viewtex2 with actual sphere images. This step is repeated 

whenever the user chooses a new atom texture or changes the light-source position.

 4.8.1  Loop over the one or two sphere images stored in 'sphere_styleS.dat' (1 normally, 2 in 

stereoscopic 3D mode):

 4.8.1.1  Extract and uncompress the 8-bit intensity bitmap corresponding to the current 

light-source  position  using  Zlib.  Potentially  mirror  the  bitmap  horizontally  and/or 

vertically (if the light-source is not in the first quadrant).

 4.8.1.2  Loop over the sphere radii r in defradtab:

 4.8.1.2.1  Shrink the 256*256 sphere image down to size 2r*2r

 4.8.1.2.2  Loop over the ATV_COLORS standard colors i:

 4.8.1.2.2.1  Convert the 8-bit intensity bitmap to an RGB color bitmap with color 

i.

 4.8.1.2.2.2  Copy the bitmap to its position in atv_viewtex or atv_viewtex2, the 

alpha channel has been initialized previously.

 4.8.2  The result should now look like in Figure 1B.

 4.9  Precalculate Z-buffers for drawing intersecting atoms:

 4.9.1  Create a 256*256 Z-buffer of 8-bit values 'atv_zbuffbak', which stores the depth values 



of a sphere with radius 127, in practice the relative Z-coordinate of the sphere surface. 127 

is assigned to the pixels at the very front (sphere center), 0 is assigned to the most distant 

pixels including those outside the sphere.

 4.9.2  Loop over the chemical elements i:

 4.9.2.1  Determine ElementRadius[i], the space filling visualization radius of this element 

in pixels (we use Van der Waals radius [in fm] * 0.7 * atv_fmtopix, which proves most 

useful for visualization, since hydrogens can still be seen outside their heavy atoms, 

and hydrogen-bonded hydrogens nicely touch the acceptor). 

 4.9.2.2  Has  the  same  ElementRadius[i]  already  been  used  for  a  preceding  chemical 

element? Then skip this element and reuse the Z-buffers of the preceding element. To 

save  memory,  elements  with  similar  radii  are  grouped  together  for  visualization 

purposes. 

 4.9.2.3  Loop over the radii r from 1 to ElementRadius[i]

 4.9.2.3.1  Create a copy of the 256*256 Z-buffer atv_zbuffbak

 4.9.2.3.2  Shrink it down to size 2r*2r

 4.9.2.3.3  Scale the Z-values in the Z-buffer with ElementRadius[i]/127.

 4.9.2.3.4  Store the Z-buffer for later use (when intersecting spheres are drawn)

 4.10  Precalculate the atom densities for ambient lighting. A very low-res 8-bit 3D density grid 

(2.62 Å spacing) of the scene will be created to determine the amount of light reaching each 

atom from the  six  main  directions  (+X,-X,+Y,-Y,+Z,-Z).  Densities  to  fill  this  3D grid  are 

precalculated for the three atom styles 'space filling', 'balls&sticks' and 'sticks', with radii of 1.2 

Å, 0.95  Å and 0.85  Å, respectively (chosen empirically to give a convincing visual result). 

Since atoms are thus smaller than the grid spacing of  2.62 Å, the density needs to be added 

with  'sub-grid-cell'  accuracy.  We  define  this  'sub-grid-cell'  accuracy  with  2  bits,  i.e.  four 

slightly shifted densities along each axis are precalculated for each of the three atom styles, 

yielding 4*4*4*3 = 192 different atom densities (the atom density index 'ADIdx' can then be 

calculated from the atom coordinate and atom style using simple shifts and logical operations 

as described in detail later). The actual density values are obtained by calculating the fraction  

of the grid cell that is inside the atom and multiplying the result with 112. Since an atom with  

radius  1.2  Å  and  volume 7.24  Å3 occupies  at  most  7.24/2.623  = 40% of  a  grid  cell,  the 

maximum density added is thus 112*0.4 = 45. So if more than 255/45 = ~5.7 atoms are present 

in a cell, the limit imposed by the 8-bit data-type is reached, the grid cell becomes completely 

light blocking. As described later, the densities will be integrated along the six main directions, 



finally ambient light reaching each atom will be interpolated from the integrated grid.

 4.11  Precalculate the atom circle masks for shadow calculation. A low-res 16-bit Z-buffer of the 

scene (with a resolution of 0.164*0.164 Å per pixel) will be drawn as seen from the direction 

of the light-source (Figure 1D). For each atom, one can then count the fraction of pixels with a 

Z-value smaller  or  equal  than  the  atom's  own Z-value,  which  is  the fraction  of  light  that  

reaches the atom. The shape of the atoms drawn in the Z-buffer is stored in three circle masks 

(16-bit bitmaps that contain 0 for pixels outside the circle and 0xffff for pixels inside the circle 

and are used as an AND mask when filling the Z-buffer (described later)). The sizes of the 

three circle masks are 15*15 pixels (used for space filling atoms), 11*11 pixels (for ball&sticks 

atoms), and 7*7 pixels (for atoms shown as sticks). So an 'X' corresponds to 0xffff, and a '.' to 

0:
   .....XXXXX.....    ....XXX....    ..XXX..  

   ...XXXXXXXXX...    ..XXXXXXX..    .XXXXX. 

   ..XXXXXXXXXXX..    .XXXXXXXXX.    XXXXXXX

   .XXXXXXXXXXXXX.    .XXXXXXXXX.    XXXXXXX

   .XXXXXXXXXXXXX.    XXXXXXXXXXX    XXXXXXX

   XXXXXXXXXXXXXXX    XXXXXXXXXXX    .XXXXX.

   XXXXXXXXXXXXXXX    XXXXXXXXXXX    ..XXX..

   XXXXXXXXXXXXXXX    .XXXXXXXXX. 

   XXXXXXXXXXXXXXX    .XXXXXXXXX. 

   XXXXXXXXXXXXXXX    ..XXXXXXX.. 

   .XXXXXXXXXXXXX.    ....XXX.... 

   .XXXXXXXXXXXXX.       

   ..XXXXXXXXXXX..

   ...XXXXXXXXX...

   .....XXXXX.....

 4.12  Initialize the 256 element table atv_darknessfogpos, which converts an 8-bit darkness value 

(from shadows  and  ambient  lighting,  see  further  below)  to  a  32-bit  float  (the  Z-position 

provided  as  fog  coordinate  in  a  GL_FOG_COORDINATE_ARRAY,  yielding  the  expected 

darkness considering the current fog equation).

 5  Run the application's main loop

 5.1  Evaluate keyboard and mouse input to let the user interact with the scene

 5.2  For any newly added atoms i: Set the radius Atom[i].Radius [in pixels]. If Atom[i].Style is 

'stick',  choose  a  user-defined  stick  radius.  Otherwise  consider  the  chemical  element:  

Atom[i].Radius = ElementRadius[Atom[i].Element]. If Atom[i].Style is 'ball&stick', scale the 

radius down by a user-defined factor.

 5.3  Calculate ambient lighting:

 5.3.1   Loop over all objects ('objects' are independent ranges of atoms that can be moved and 



rotated separately, e.g. one object per PDB file loaded, or one object per NMR ensemble 

member). Have atoms in the object changed their relative positions since the last loop? 

Have atoms been added or deleted? Then ambient lighting has changed and needs to be 

updated for this object now:

 5.3.1.1  Loop over the heavy atoms i in the object to determine the bounding box in units  

of  [femtometers]  from the  atom coordinates  in  the  local  coordinate  system of  the 

original PDB file (Atom[i].LocalPos).

 5.3.1.2  Convert  the size of the bounding box from [fm] to [grid units],  1 grid unit is 

1<<18 fm, i.e. 2.62 Å (see initialization).

 5.3.1.3  Allocate a 3D grid of 8-bit unsigned bytes with the dimensions of the bounding 

box. This grid stores the densities.

 5.3.1.4  Loop over the heavy atoms i in the object:

 5.3.1.4.1  Determine the grid coordinates of the cube that contains the atom center: 

CubePos=(Atom[i].LocalPos-BoundingBoxStart)>>18.

 5.3.1.4.2  Determine the relative atom position within the grid cube, which is in the 

range 0..3: AtomRelPos=((Atom[i].LocalPos-BoundingBoxStart)>>16)&3.

 5.3.1.4.3  Determine ADIdx, the index into the atom density data for this atom. The 

index depends on the atom style (0=space filling, 1=ball&stick, 2=stick) and the 

relative atom position, and is in the range [0..191] (see initialization above).

ADIdx=AtomRelPos.x+AtomRelPos.y*4+AtomRelPos.z*16+Atom[i].Style*64

 5.3.1.4.4  Use ADIdx to look up the step from CubePos to the front/left/bottom cube 

touched by the atom, the number of grid cubes along X/Y/Z affected by the atom, 

and the atom density data to be added to the ambience grid.

 5.3.1.4.5  Add  the  atom  density  data,  using  SIMD  vector  instructions  for  adding 

unsigned bytes with saturation (e.g. paddusb).

 5.3.1.5  Allocate a second 3D grid of unsigned bytes with the dimensions of the bounding 

box. This grid stores integrated densities.

 5.3.1.6  Loop over the density grid four times: up the Y-axis, down the Y-axis, up the Z-

axis, down the Z-axis

 5.3.1.6.1  Proceed  along  the  current  axis  direction,  adding  up  the  densities  in  an 

accumulation register (again using SIMD vector instructions for adding unsigned 

bytes with saturation), and continuously storing the accumulator register in  the 

second  grid,  which  thus  contains  integrated  densities,  i.e.  the  amount  of  light 



blocked up to this point.

 5.3.1.6.2  Loop over the heavy atoms i in the object:

 5.3.1.6.2.1  Determine again the grid coordinates  of the cube that  contains the 

atom center: CubePos=(Atom[i].LocalPos-BoundingBoxStart)>>18.

 5.3.1.6.2.2  Determine again the relative atom position within the grid cube, this 

time  without  discarding  bits:  AtomRelPos=(Atom[i].LocalPos-

BoundingBoxStart)&((1<<18)-1).

 5.3.1.6.2.3  Use  AtomRelPos  as  an  interpolation  factor  to  interpolate  the 

integrated density at the position of the atom from the surrounding eight grid 

points at CubePos.x/.y/.z, CubePos.x+1/.y/.z, CubePos.x/.y+1/.z etc.

 5.3.1.6.2.4  Store  the  interpolated  integrated  density  as  one  of  six  per-atom 

darkness values for later use

 5.3.1.7  At this point, four darkness values (=interpolated integrated densities) per atom 

are available, two are still missing: up the X-axis and down the X-axis. These could 

not be obtained easily from the density grid, because integration along X would need 

to happen 'horizontally' within a SIMD register. Instead, the entire procedure above is 

simply repeated with a flipped grid:

 5.3.1.8  Flip the X- and Y-axes of the bounding box

 5.3.1.9  Allocate a 3D grid of unsigned bytes with the dimensions of the flipped bounding 

box. This grid stores densities.

 5.3.1.10  Loop over the density grid two times: up the X-axis and down the X-axis

 5.3.1.10.1  Obtain  the  remaining  two  interpolated  integrated  densities  (=darkness 

values)  as  described  above,  flipping  atom X-  and  Y-coordinates  to  match  the 

flipped grid axes.

 5.3.2  Now six  darkness  values  'DirectionDarkness[0..5]'  are  available  for  each  atom,  that 

define how much density lies in the path of the light along each of the six main directions.

 5.3.3  Loop over all objects to determine the final ambient darkness value, which depends on 

the position of the eye (=camera) with respect to the object's six main direction, and must  

thus be recalculated if the object is rotated.

 5.3.3.1  Determine EyeDirection, the direction vector from the object to the eye in the 

object's local coordinate system (where the darkness values were determined along the 

six main directions MainDirection[0..5], i.e. (1,0,0), (-1,0,0), (0,1,0) etc.

 5.3.3.2  Calculate  the  scaling  factors  i  for  the  six  darkness  values: 



Scale[i]=(MainDirection[i]*EyeDirection+1)*0.5

 5.3.3.3  Loop over the atoms i in the object:

 5.3.3.3.1  Calculate  the  final  ambient  darkness  value:  AmbientDarkness[i]  = 

DirectionDarkness[i][0]*Scale[0]+  DirectionDarkness[i][1]*Scale[1]+.....

+DirectionDarkness[i][5]*Scale[5]

 5.4  Calculate shadows: 

 5.4.1  Get  a  transformation  matrix  'LightTransMatrix'  that  rotates  ply_lightdir  onto  the 

negative Z-axis, so that the light shines from behind, this is the coordinate system of the 

light-source.

 5.4.2  Loop over the objects i:

 5.4.2.1  Transform  the  global  position  of  object  i,  Obj[i].GlobalPos  (in  [fm]),  with 

LightTransMatrix, yielding a new position Obj[i].Pos in the coordinate system of the 

light-source.

 5.4.2.2  Have atom coordinates in the object changed since last time? If yes, re-determine 

Obj[i].Radius (in [fm]), the radius of the sphere that is centered at the position of the 

object and encloses all atoms in the object.

 5.4.3  Use the radii of the enclosing spheres to cluster the objects, forming groups of those that 

cast shadows onto each other.

 5.4.4  Loop over the groups of objects:

 5.4.4.1  Sort  the  objects  i  in  the  group  based  on  the  smallest  Z-coordinate  covered 

(Obj[i].Pos.z-Obj[i].Radius), lowest comes first.

 5.4.4.2  For each object i in the group, create a transformation matrix Obj[i].TransMatrix 

from  the  local  (PDB)  coordinate  system  used  by  the  atoms  in  the  object 

(Atom[].LocalPos) to the coordinate system of the light-source. This transformation 

includes  an  initial  rotation,  a  translation  to  Obj[i].GlobalPos  and  finally 

LightTransMatrix.

 5.4.4.3  Shift  the  objects  i  in  the  group  along  Z  (and  adjust  Obj[i].TransMatrix 

accordingly) so that the first object starts at Z=0 (Obj[first].Pos-z-Obj[first].Radius=0) 

and that there are no gaps between the enclosing spheres along Z (we soon need to  

create a common Z-buffer for all objects in the group, and large gaps between objects 

would waste Z-buffer resolution).

 5.4.4.4  Loop  over  the  objects  i  in  the  group  to  determine  the  Z-range  covered: 

ZRange=max(ZRange,Obj[i].Pos.z+Obj[i].Radius).



 5.4.4.5  Adapt each Obj[i].TransMatrix to scale the Z-coordinate with -32767/ZRange and 

add 32767. If the local atom coordinates Atom[i].LocalPos in an object are multiplied 

with this matrix, the resulting Z-coordinates will fall into the range [0..32767] and fit 

into a 16 bit signed Z-buffer. Note the inversion, the closest atom gets the highest Z-

coordinate.

 5.4.4.6  Loop over the objects in the group to determine the bounding rectangle along X 

and  Y  in  units  of  [fm],  e.g.  BoundingRectStart.x  = 

min(BoundingRectStart.x,Obj[i].Pos.x-Obj[i].Radius) etc.

 5.4.4.7  Convert the size of the bounding rectangle from [fm] to [Z-buffer units], 1 Z-

buffer unit is 1<<14 fm, i.e. ~0.164 Å (see initialization).

 5.4.4.8  Allocate 2D 16bit Z-buffers of signed words with the dimensions of the bounding 

rectangle, one for each thread that will work on shadows. Using more than four threads 

is not beneficial.

 5.4.4.9  Distribute the atoms in the objects of the current cluster among the threads.

 5.4.4.10  Spawn threads to fill the Z-buffers, and in each thread...

 5.4.4.10.1  Clear the 2D Z-buffer belonging to this thread with zeroes (i.e. the most 

distant value after the sign flip above).

 5.4.4.10.2  Loop over the heavy atoms i belonging to this thread:

 5.4.4.10.2.1  Determine which object j the atom i belongs to.

 5.4.4.10.2.2  Transform  atom  i  to  the  coordinate  system  of  the  light: 

Atom[i].LightPos = Obj[j].TransMatrix * Atom[i].LocalPos.

 5.4.4.10.2.3  Determine  the  Z-buffer  X/Y  coordinates  of  the  atom: 

ZBufferPos=(Atom[i].LightPos-BoundingRectStart)>>14.

 5.4.4.10.2.4  Look at the atom style to determine the diameter of the filled circle 

that will be drawn into the Z-buffer (the circle mask). We use 15 pixels for 

space  filling  balls,  11  pixels  for  balls&sticks,  and 7  pixels  for  sticks  (see 

setup).

 5.4.4.10.2.5  Update the Z-buffer X/Y coordinates by subtracting the radius of the 

filled circle.

 5.4.4.10.2.6  Loop  over  the  7x7,  11x11  or  15x15  square  in  the  Z-buffer  that 

encloses the current atom using indices k,l:

 5.4.4.10.2.6.1  Update the Z-buffer: ZBuffer[X+k][Y+l]= max(ZBuffer[X+k]

[Y+l],  Atom[i].LightPos.z  &  AtomCircleMask[k][l]).  AtomCircleMask 



contains the precalculated filled circle (see setup), each pixel is either 0 or 

0xffff, and used as an AND-mask, yielding either 0 (for pixels outside the 

circle)  or   Atom[i].LightPos.z  (for  pixels  inside  the  circle).  The 

corresponding SIMD vector instructions are pmaxsw and pand.

 5.4.4.11  Combine the Z-buffers of the threads by keeping the maximum values, the result 

should look as shown in Figure 1D, with Z-buffer value 0 mapped to white, and 32767 

mapped to black.

 5.4.4.12  Spawn threads to determine the amount of light reaching each atom, and in each 

thread...

 5.4.4.12.1  Loop over the atoms i belonging to this thread:

 5.4.4.12.1.1  Determine  the  Z-buffer  X/Y  coordinates  of  the  atom: 

ZbufferPos=(Atom[i].LightPos-BoundingRectStart)>>14.

 5.4.4.12.1.2  Count  all  Z-buffer  pixels  within  the  large  atom circle  (15  pixels 

diameter)  that  are  smaller  or  equal  Atom[i].LightPos.z,  then  divide  by  the 

number of pixels in the circle to obtain the fraction of the atom that is lighted. 

Note that the large circle is also used for smaller atoms (shown as sticks or 

balls & sticks), because the larger area reduces flicker.

 5.4.4.12.1.3  Calculate the ShadowDarkness[i] = 1 - lighted fraction.

 5.5  Loop  over  the  atoms  i  to  calculate  the  final  darkness:  Atom[i].Darkness= 

max(AmbientDarkness[i]* atv_ambience, ShadowDarkness[i]*atv_shadow)

 5.6  Loop over the objects and create new transformation matrices Obj[i].TransMatrix from the 

local (PDB) coordinate system used by the atoms in the object (Atom[].LocalPos in [fm]) to  

the global  coordinate system in [pixels].  This transformation includes an initial  rotation,  a 

translation to Obj[i].GlobalPos, and a conversion from fm to pixels (atv_fmtopix).

 5.7  Loop over the atoms i to transform their coordinates:

 5.7.1  Transform the atom from the local coordinate system within its object j to the common 

global  coordinate  system:  Atom[i].GlobalPos  [in  pixels]  =  Obj[j].TransMatrix  * 

Atom[i].LocalPos [in fm]

 5.7.2  Project  the global  atom coordinates  onto the view plane (the 'perspective division'): 

Atom[i].ProjectedPos.x=Atom[i].GlobalPos.x*ply_eyedis/

(Atom[i].GlobalPos.z+ply_eyedis), and

Atom[i].ProjectedPos.y=-Atom[i].GlobalPos.y*ply_eyedis/

(Atom[i].GlobalPos.z+ply_eyedis).  Note  that  the  Y-coordinate  is  reversed,  because 



projected screen coordinates increase from top to bottom.

 5.7.3  Determine the projected atom radius[pixels]: Atom[i].ProjectedRadius=Atom[i].Radius* 

ply_eyedis/(Atom[i].GlobalPos.z+ply_eyedis) .

 5.7.4  Loop over the four screen sides (left, right, top, bottom) and check if the atom is entirely 

off-screen on this side (considering Atom[i].ProjectedPos and Atom[i].ProjectedRadius). If 

yes, set the corresponding Cohen Sutherland clipping bit to 1.

 5.7.5  If abs(Atom[i].GlobalPos.z)<Atom[i].Radius, then add the atom to atv_vpcliptab, the 

table of atoms clipped by the view plane.

 5.8  Draw the sticks between atoms shown as sticks or balls&sticks:

 5.8.1  Enable texture mapping

BindTexture(GL_TEXTURE_2D,atv_viewtex);

glTexEnvi(GL_TEXTURE_ENV,GL_TEXTURE_ENV_MODE,GL_REPLACE);

glEnable(GL_TEXTURE_2D);

glEnable(GL_ALPHA_TEST);

 5.8.2  Enable vertex arrays:

glEnableClientState(GL_TEXTURE_COORD_ARRAY);

glEnableClientState(GL_COLOR_ARRAY);  (for blending factors)   

 5.8.3  Initialize the second texture unit (unit 1). We need multi-texturing to create colors other 

than the ATV_COLORS standard colors stored in atv_viewtex.  We simply blend two of 

the  standard  colors  together,  using  the  color  from  GL_COLOR_ARRAY as  blending 

factor.

glActiveTexture(GL_TEXTURE1);

glBindTexture(GL_TEXTURE_2D,atv_viewtex);

 5.8.3.1  In  texture  unit  1,  we GL_COMBINE by GL_INTERPOLATING the  previous 

RGB/alpha values from texture unit 0...

glTexEnvi(GL_TEXTURE_ENV,GL_TEXTURE_ENV_MODE,GL_COMBINE)

glTexEnvi(GL_TEXTURE_ENV,GL_COMBINE_RGB,GL_INTERPOLATE);

glTexEnvi(GL_TEXTURE_ENV,GL_COMBINE_ALPHA,GL_INTERPOLATE)

glTexEnvi(GL_TEXTURE_ENV,GL_SRC0_RGB,GL_PREVIOUS);

glTexEnvi(GL_TEXTURE_ENV,GL_SRC0_ALPHA,GL_PREVIOUS);

glTexEnvi(GL_TEXTURE_ENV,GL_OPERAND0_RGB,GL_SRC_COLOR);

glTexEnvi(GL_TEXTURE_ENV,GL_OPERAND0_ALPHA,GL_SRC_ALPHA)



 5.8.3.2  ..with those from the current texture unit 1...

glTexEnvi(GL_TEXTURE_ENV,GL_SRC1_RGB,GL_TEXTURE);

glTexEnvi(GL_TEXTURE_ENV,GL_SRC1_ALPHA,GL_TEXTURE);

glTexEnvi(GL_TEXTURE_ENV,GL_OPERAND1_RGB,GL_SRC_COLOR);

glTexEnvi(GL_TEXTURE_ENV,GL_OPERAND1_ALPHA,GL_SRC_ALPHA)

 5.8.3.3  ...using the GL_PRIMARY_COLOR as interpolation factor:

glTexEnvi(GL_TEXTURE_ENV,GL_SRC2_RGB,GL_PRIMARY_COLOR);

glTexEnvi(GL_TEXTURE_ENV,GL_SRC2_ALPHA,GL_PRIMARY_COLOR)

glTexEnvi(GL_TEXTURE_ENV,GL_OPERAND2_RGB,GL_SRC_COLOR);

glTexEnvi(GL_TEXTURE_ENV,GL_OPERAND2_ALPHA,GL_SRC_ALPHA)

glEnableClientState(GL_TEXTURE_COORD_ARRAY);

 5.8.4  Is the extension GL_EXT_fog_coord present? We need it to set the darkness caused by 

ambient lighting, shadows and fog. Especially OpenGL/ES is lacking it. So if it is missing,  

use texture unit 2 to emulate it using a 1x256 decal texture 'ply_fogtex', which is used to 

blend with the fog color:

glActiveTexture(GL_TEXTURE2);

glBindTexture(GL_TEXTURE_2D,ply_fogtex);

glEnable(GL_TEXTURE_2D);

glTexEnvi(GL_TEXTURE_ENV,GL_TEXTURE_ENV_MODE,GL_DECAL);

glClientActiveTexture(GL_TEXTURE2);

glEnableClientState(GL_TEXTURE_COORD_ARRAY); 

 5.8.5  Switch back to texture unit 0:

glActiveTexture(GL_TEXTURE0);

glClientActiveTexture(GL_TEXTURE0);

 5.8.6  Is the extension GL_EXT_fog_coord present? Then activate it...

glFogi(GL_FOG_COORDINATE_SOURCE,GL_FOG_COORDINATE);

glEnableClientState(GL_FOG_COORDINATE_ARRAY);

 5.8.7  Draw only pixels with Alpha>0.5:

glAlphaFunc(GL_GREATER,0.5);

 5.8.8  Enable the Z-buffer

glDepthFunc(GL_LEQUAL);

glEnable(GL_DEPTH_TEST);



 5.8.9  Create a queue where multiple threads can add draw buffers with geometry that is ready 

to be sent to OpenGL

 5.8.10  Spawn N threads to draw the sticks, and in..

 5.8.10.1  Thread  0,  the  consumer:  Check  the  queue  of  draw  buffers,  and  submit  any 

waiting buffers (consisting of a vertex buffer and an index buffer) to OpenGL using 

primitive GL_TRIANGLE_STRIP.

 5.8.10.2  Thread 1..N-1, the workers: Loop over the atoms i assigned to this thread:

 5.8.10.2.1  Is atom i in front of the view plane and not hidden by the user? Then loop 

over its covalently bound atoms j:

 5.8.10.2.1.1  Is one of the two binding partners styled as stick or ball&stick? And 

is the bound atom not hidden by the user? And has the bound atom j a larger 

Z? (Or the same Z and a higher atom number?) And is the bitwise AND of the 

two binding partner's  Cohen Sutherland clipping bits  zero?  Then  draw the 

stick:

 5.8.10.2.1.1.1  Get  the normalized  direction  vector  from atom i  to  atom j: 

Vec1 = Normalized(Atom[j].GlobalPos-Atom[i].GlobalPos).

 5.8.10.2.1.1.2  Get  the  2D normal  vector  of  the  projected  direction  vector 

from  atom  i  to  atom  j:  Vec2  =  Normalized(Atom[j].ProjectedPos.y-

Atom[i].ProjectedPos.y,  Atom[i].ProjectedPos.x -

Atom[j].ProjectedPos.x)

 5.8.10.2.1.1.3  The  cylinder  (=stick)  vertices  lie  in  planes  whose  normal 

vector is Vec1. Get two vectors spanning this plane: the first is Vec2, and 

the second is Vec3 = Normalized(CrossProduct(Vec2,Vec1)).

 5.8.10.2.1.1.4  Determine  the  level  of  detail  (LOD),  i.e.  how  many  quads 

(=rectangles  consisting of  2  triangles)  will  be used to  approximate the 

bond cylinder. If Atom[i].ProjectedRadius>9, we draw 5 quads with 12 

vertices (i.e. 6 steps*2 sides=12 vertices, 36 degrees apart, since only the 

front side of each cylinder is drawn). If Atom[i].ProjectedRadius>3, we 

use 3 quads (4 steps*2=8 vertices, 60 degree apart), and one single quad 

otherwise.

 5.8.10.2.1.1.5  Determine the distance between the start  of  a stick cylinder 

attached to atom i and atom i (1 is subtracted to move a bit closer):

StickDistance_i = max(0,sqrt(sqr(Atom[i].Radius)-sqr(StickRadius))-1).



 5.8.10.2.1.1.6  Determine the distance between the start  of  a stick cylinder 

attached to atom j and atom j: 

StickDistance_j = max(0,sqrt(sqr(Atom[j].Radius)-sqr(StickRadius))-1).

 5.8.10.2.1.1.7  Loop  over  the  steps,  k=0..steps-1,  calculate  the  vertex 

positions:

 5.8.10.2.1.1.7.1  First the angle along the cylinder side surface: 

Alpha = k*(Pi/(steps-1))

 5.8.10.2.1.1.7.2  Then  the  position  on  the  cylinder  side  surface: 

Pos=Vec2*cos(Alpha)*StickRadius+Vec3*sin(Alpha)*StickRadius, 

use a lookup table to speed this up.

 5.8.10.2.1.1.7.3  Calculate  the  corresponding  texture  coordinate: 

TexPos.x(.y)= Pos.x(.y) * 0.97 * SphereImageRadius / StickRadius + 

SphereImageRadius,  where SphereImageRadius is  the radius  of  the 

ATV_COLORS largest sphere images in atv_viewtex. The empirical 

factor 0.97 makes sure that the texture position is not too close to the 

border of the sphere image.

 5.8.10.2.1.1.7.4  Calculate the corresponding vertex positions at atoms i 

and  j:  Pos_i=Pos+Atom[i].GlobalPos+StickDistance_i*Vec1, 

Pos_j=Pos+Atom[j].GlobalPos-StickDistance_j*Vec1.

 5.8.10.2.1.1.7.5  Store the vertex at atom i in the vertex buffer: Vertex.Pos 

=  Pos_i, Vertex.TexPos1 = TexPos+ColorOffset1i, Vertex.TexPos2 = 

TexPos+ColorOffset2i,  Vertex.Color=BlendingFactor_i  (the  color  of 

atom i is created using multi-texturing, by blending two sphere images 

in  texture  atv_viewtex  starting  at  ColorOffset1i  and  ColorOffset2i 

with BlendingFactor_i. The last three values are read from a look up 

table,  using  Atom[i].Color  as  index).  Vertex.FogPos  = 

atv_darknessfogpos[Atom[i].Darkness]. 

 5.8.10.2.1.1.7.6  If atoms i and j have different colors, store two vertices 

halfway  between,  with  position  (Pos_i+Pos_j)*0.5.  Except  for  the 

position, the first vertex is the same as the one above, and the second 

vertex is the same as the one below.

 5.8.10.2.1.1.7.7  Store the vertex at atom j in the vertex buffer: Vertex.Pos 

= Pos_j, Vertex.TexPos1 = TexPos+ColorOffset1j, Vertex.TexPos2 = 



TexPos+ColorOffset2j,  Vertex.Color=BlendingFactor_j  (as  above). 

Vertex.FogPos = atv_darknessfogpos[Atom[j].Darkness]

 5.8.10.2.1.1.8  Finish the stick by adding indices to the index buffer. If the 

index buffer is not empty,  first add degenerate triangle indices to jump 

from the previous stick to the current one.

 5.8.10.2.2  If the vertex buffer is full or the last atom has been reached, add it to the 

queue (to be drawn by thread 0) and fill the next buffer or stop.

 5.8.11  Disable texture mapping, vertex arrays, alpha blending, depth test, restore depth func.

 5.9  If  antialiasing  is  enabled  (and  atoms  will  be  drawn  with  alpha-blending  enabled  to  get 

perfectly smooth spheres, independent of any full-scene antialiasing provided by the GPU): 

spawn multiple threads to sort the atoms by their Atom[i].GlobalPos.z, e.g. by dividing the Z-

range into multiple small intervals, and using a simple insertion sort within each interval.

 5.10  Draw the atom spheres:

 5.10.1  Repeat the steps done for drawing sticks above: Enable texture mapping and vertex 

arrays, initialize the second texture unit, deal with GL_EXT_fog_coord. There is mainly 

one difference: If antialiasing is enabled, and atoms have been depth-sorted, don't draw 

only pixels with Alpha>0.5 (see above), but do real alpha blending instead:

glEnable(GL_BLEND);

glBlendFunc(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA);

glAlphaFunc(GL_GREATER,0.0);

 5.10.2  Create a queue where multiple threads can add draw buffers.

 5.10.3  Spawn N threads to draw the spheres. If antialiasing is enabled, we need to draw the 

depth-sorted spheres in order, so N is at most 2, more threads would not help. And in..

 5.10.3.1  Thread  0,  the  consumer:  Check  the  queue  of  draw  buffers,  and  submit  any 

waiting buffers (consisting of a vertex buffer and an index buffer) to OpenGL using 

primitive GL_TRIANGLE_STRIP.

 5.10.3.2  Thread 1..N-1, the workers: If antialiasing is enabled and atoms have been depth-

sorted before, loop over the atoms i in the sort table, otherwise loop over the atoms i 

assigned to this thread:

 5.10.3.2.1  Is atom i in front of the view plane and not hidden by the user and not off 

screen (Cohen Sutherland clipping bits are zero)? Then draw it:

 5.10.3.2.1.1  Look up the texture coordinates of the smallest two sphere images in 

atv_viewtex that are larger than Atom[i].ProjectedRadius (mip-mapping) and 



need to be blended to produce the color of the current atom. Each of the two 

sphere images has actually two texture coordinates: the top left corner 'tl' and 

the  bottom right  corner  'br',  so  we have  four  texture  coordinates  in  total: 

ColorOffset1tl, ColorOffset1br, ColorOffset2tl and ColorOffset2br.

 5.10.3.2.1.2  Is the atom styled as stick or ball&stick? Or does the atom have no 

covalent bonds? Then we do not consider intersections with other atoms and 

can...

 5.10.3.2.1.2.1  Draw a non-intersecting atom, i.e. a single quad (two triangles) 

by storing the four corner vertices in the vertex buffer (Figure 1C, oxygen 

and hydrogen 1):

 5.10.3.2.1.2.1.1  Store top left corner: Vertex.Pos = (Atom[i].GlobalPos.x-

Atom[i].Radius, Atom[i].GlobalPos.y+Atom[i].Radius, 

Atom[i].GlobalPos.z),Vertex.TexPos1=ColorOffset1tl, 

Vertex.TexPos2=ColorOffset2tl,Vertex.Color=BlendingFactor_i, 

Vertex.FogPos=atv_darknessfogpos[Atom[i].Darkness]  (these  vertex 

components are described in detail in the section about stick drawing).

 5.10.3.2.1.2.1.2  Top right corner:   Vertex.Pos = (Atom[i].GlobalPos.x+ 

Atom[i].Radius, Atom[i].GlobalPos.y+Atom[i].Radius, 

Atom[i].GlobalPos.z),

Vertex.TexPos1=(ColorOffset1br.x,ColorOffset1tl.y), 

Vertex.TexPos2=(ColorOffset2br.x,ColorOffset2tl.y), rest is the same.

 5.10.3.2.1.2.1.3  Bottom  left  corner:  Vertex.Pos=(Atom[i].GlobalPos.x-

Atom[i].Radius,Atom[i].GlobalPos.y-Atom[i].Radius, 

Atom[i].GlobalPos.z),

Vertex.TexPos1=(ColorOffset1tl.x,ColorOffset1br.y), 

Vertex.TexPos2=(ColorOffset2tl.x,ColorOffset2br.y).

 5.10.3.2.1.2.1.4  Bottom right corner: Vertex.Pos=(Atom[i].GlobalPos.x+ 

Atom[i].Radius,Atom[i].GlobalPos.y-Atom[i].Radius, 

Atom[i].GlobalPos.z),Vertex.TexPos1=ColorOffset1br, 

Vertex.TexPos2=ColorOffset2br, rest is again the same.

 5.10.3.2.1.3  Otherwise  (if  the  atom  is  shown  in  space  filling  style),  it  can 

potentially intersect with other atoms and we need to...

 5.10.3.2.1.3.1  Draw a potentially intersecting atom (Figure 1C, hydrogen 2):



 5.10.3.2.1.3.1.1  Calculate  the screen  coordinates  of  the top left  corner 

and  store  it  in  2D  vectors  StartLeftEdge=LastLeftEdge= 

Atom[i].ProjectedPos-Atom[i].ProjectedRadius.

 5.10.3.2.1.3.1.2  Calculate the screen coordinates of the top right corner, 

and  store  it  in  2D  vectors  StartRightEdge=LastRightEdge= 

(LeftEdge.x+Atom[i].ProjectedRadius*2,LeftEdge.y)

 5.10.3.2.1.3.1.3  Collect  all  the  more  distant  atoms  j 

(Atom[j].GlobalPos.z>Atom[i].GlobalPos.z  or  (Atom[j].GlobalPos.z 

==Atom[i].GlobalPos.z and j>i)) that can influence the shape of atom 

i by intersection, i.e. those atoms that are closer along Z than their 

own  radius  (Atom[j].GlobalPos.z-Atom[i].GlobalPos.z< 

Atom[j].Radius)  and  whose  sphere  image  touches  atom  i: 

Length(Atom[j].ProjectedPos-Atom[i].ProjectedPos)< 

Atom[i].ProjectedRadius+Atom[j].ProjectedRadius. The atoms j could 

be found quickly with a neighbor search grid, but it turns out that the 

trivial  approach  to  just  look  at  covalently  bound  atoms  is  good 

enough. If no atom j is found, draw a non-intersecting atom instead.

 5.10.3.2.1.3.1.4  Get pointers to the pre-calculated Z-buffers of atom i and 

the atoms j (there is one Z-buffer with 8-bit depth values for every 

Atom.ProjectedRadius, see initialization).

 5.10.3.2.1.3.1.5  Loop over the Atom[i].ProjectedRadius*2 pixel lines of 

atom i:

 5.10.3.2.1.3.1.5.1  Calculate the screen coordinates of the current left 

polygon  edge,  assuming  no  intersections:  LeftEdge= 

(Atom[i].ProjectedPos.x-Atom[i].ProjectedRadius, 

LastLeftEdge.y+1)

 5.10.3.2.1.3.1.5.2  Calculate  the  screen  coordinates  of  the  current 

right  polygon  edge,  assuming  no  intersections:  RightEdge= 

(Atom[i].ProjectedPos.x+Atom[i].ProjectedRadius, 

LastRightEdge.y+1)

 5.10.3.2.1.3.1.5.3  Look up the positions of the left-most and right-

most pixels of the current pixel line of atom i (tracing the sphere 

outline).



 5.10.3.2.1.3.1.5.4  Loop over the probably intersecting atoms j:

 5.10.3.2.1.3.1.5.4.1  Look  up  the  positions  of  the  left-most  and 

right-most pixels of the corresponding pixel line of atom j. If 

they overlap with those of atom i, determine the corresponding 

pixel line in the Z-buffer of atom j, and compare the Z-buffer 

values  (considering  the  Z-difference   Atom[j].GlobalPos.z-

Atom[i].GlobalPos.z)  until  the  intersection  is  found.  Update 

LeftEdge.x and RightEdge.x accordingly.

 5.10.3.2.1.3.1.5.5  Check if  LeftEdge lies  roughly  (+-1 pixel)  on  a 

line through StartLeftEdge and LastLeftEdge, and if RightEdge lies 

roughly on a line trough  StartRightEdge and LastRightEdge. If this 

is  not  true,  then  the intersection curve has changed direction  so 

much, that it can no longer be approximated by a straight line. We 

therefore need to emit four vertices to draw a part of the sphere 

(Figure 1C, hydrogen 2), as described above for drawing a non-

intersecting  atom.  The  only  difference  are  Vertex.Pos, 

Vertex.TexPos1 and Vertex.TexPos2,  which  are  no  longer  at  the 

four  corners  of  the  atom,  but  at  StartLeftEdge,  StartRightEdge, 

LastLeftEdge, and LastRightEdge (these screen coordinates need to 

be  transformed  back  to  global  coordinates  and  to  texture 

coordinates).  Finally  set  StartLeftEdge=LastLeftEdge  and 

StartRightEdge=LastRightEdge.

 5.10.3.2.1.3.1.5.6  Set  LastLeftEdge=LeftEdge, and LastRightEdge= 

RightEdge.

 5.10.3.2.2  If the vertex buffer is full or the last atom has been drawn, add it to the 

queue (to be drawn by thread 0) and fill the next buffer or stop.

 5.10.4  Disable texture mapping, vertex arrays, alpha blending, depth test, restore depth func.

 5.11  Handle clipped atoms:  Loop over  the  atoms i  that  are  cut  by  the view plane (stored  in 

atv_vpcliptab),  determine  the  radius  of  the  clipping  circle  (CircleRadius  =   sqrt 

(sqr(Atom[i].Radius)-sqr(Atom[i].GlobalPos.z))) and draw it, potentially with a text indicating 

the chemical element, which thus becomes visible when the atom is cut open.

 5.12  If  stereoscopic  3D  is  active,  repeat  the  drawing  procedure  using  the  second  texture 

atv_viewtex2 and horizonally shifted atom coordinates.


